机器学习和生物信息学实验室联盟

 找回密码
 注册

QQ登录

只需一步,快速开始

搜索
查看: 8158|回复: 1
打印 上一主题 下一主题

图像标注及分类数据集

[复制链接]
跳转到指定楼层
楼主
发表于 2016-12-12 11:10:53 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 xuqian 于 2016-12-20 15:43 编辑

图像标注及分类数据集:

1.数据名称:INRIA features for image annotation and classification data sets
  主要包含:corel5k, iaprtc12, espgame, pascal07, mirflickr 共5个数据集

2.数据内容
  (1) A dictionary: the list of words used for annotating the images.
  (2) Lists of files of train and test sets. You will have to figure out the correspondence of these lists with the set of images you collected, but this shouldn't be too hard.
  (3) Annotation files for the train/test sets: matrix containing binary values to encode the annotations. Columns correspond to words in the dictionary, rows correspond to images as in the lists
  (4) 15 Descriptor files for the train/test sets: matrices containing visual descriptors for the images: Gist, DenseSift, DenseSiftV3H1, HarrisSift, HarrisSiftV3H1, DenseHue, DenseHueV3H1, HarrisHue, HarrisHueV3H1, Rgb, RgbV3H1, Lab, LabV3H1, Hsv, HsvV3H1

3.数据下载
  链接:http://pan.baidu.com/s/1geQ1pv1
  密码:w13x

4.数据来源http://lear.inrialpes.fr/people/guillaumin/data.php

5.数据读取
  调用”vectools_matlab”文件夹下的vec_read.m和vec_write.m函数
  下面给出一个样例:
  %% load the train and test data, Espgame, Dense sift features
  dataset_train=double(vec_read('espgame_train_DenseSift.hvecs'));
  dataset_test=double(vec_read('espgame_test_DenseSift.hvecs'));
分享到:  QQ好友和群QQ好友和群 QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 转播转播 分享分享
回复

使用道具 举报

沙发
发表于 2016-12-15 17:04:26 | 只看该作者
本帖最后由 zhuwencheng 于 2016-12-15 17:08 编辑

下载的数据放到 D:\ 目录下(如果放在其他的目录下,修改文件位置即可),处理方式:
dataset = 'pascal07';
fea = 'DenseSift';

switch dataset
    case 'espgame'
        tr_d = double(vec_read(['D:\ImageMulti-labelData\espgame.20091111\espgame_train_' fea '.hvecs']));
        tt_d = double(vec_read(['D:\ImageMulti-labelData\espgame.20091111\espgame_test_' fea '.hvecs']));
        tt_l = double(vec_read('D:\ImageMulti-labelData\espgame.20091111\espgame_test_annot.hvecs'));
        tr_l = double(vec_read('D:\ImageMulti-labelData\espgame.20091111\espgame_train_annot.hvecs'));
    case 'iaprtc12'
        tr_d = double(vec_read(['D:\ImageMulti-labelData\iaprtc12.20091111\iaprtc12_train_' fea '.hvecs']));
        tt_d = double(vec_read(['D:\ImageMulti-labelData\iaprtc12.20091111\iaprtc12_test_' fea '.hvecs']));
        tt_l = double(vec_read('D:\ImageMulti-labelData\iaprtc12.20091111\iaprtc12_test_annot.hvecs'));
        tr_l = double(vec_read('D:\ImageMulti-labelData\iaprtc12.20091111\iaprtc12_train_annot.hvecs'));
    case 'mirflickr'
        tr_d = double(vec_read(['D:\ImageMulti-labelData\mirflickr.20101118\mirflickr_train_' fea '.hvecs']));
        tt_d = double(vec_read(['D:\ImageMulti-labelData\mirflickr.20101118\mirflickr_test_' fea '.hvecs']));

        tt_l = double(load('D:\ImageMulti-labelData\mirflickr.20101118\mirflickr_test_classes.txt'));
        tr_l = double(load('D:\ImageMulti-labelData\mirflickr.20101118\mirflickr_train_classes.txt'));
    case 'pascal07'
        tr_d = double(vec_read(['D:\ImageMulti-labelData\pascal07.20100609\pascal07_train_' fea '.hvecs']));
        tt_d = double(vec_read(['D:\ImageMulti-labelData\pascal07.20100609\pascal07_test_' fea '.hvecs']));

        tt_l = double(load('D:\ImageMulti-labelData\pascal07.20100609\pascal07_test_classes.txt'));
        tr_l = double(load('D:\ImageMulti-labelData\pascal07.20100609\pascal07_train_classes.txt'));
end
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

机器学习和生物信息学实验室联盟  

GMT+8, 2024-11-23 00:16 , Processed in 0.068186 second(s), 20 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表