- package com.endual.paper.service.impls;
- import weka.attributeSelection.*;
- import weka.core.*;
- import weka.core.converters.ConverterUtils.*;
- import weka.classifiers.*;
- import weka.classifiers.meta.*;
- import weka.classifiers.trees.*;
- import weka.filters.*;
- import java.util.*;
- /**
- * performs attribute selection using CfsSubsetEval and GreedyStepwise
- * (backwards) and trains J48 with that. Needs 3.5.5 or higher to compile.
- *
- * @author FracPete (fracpete at waikato dot ac dot nz)
- */
- public class AttributeSelectionTest {
- /**
- * uses the meta-classifier
- */
- protected static void useClassifier(Instances data) throws Exception {
- System.out.println("\n1. Meta-classfier");
- AttributeSelectedClassifier classifier = new AttributeSelectedClassifier();
- CfsSubsetEval eval = new CfsSubsetEval();
- GreedyStepwise search = new GreedyStepwise();
- search.setSearchBackwards(true);
- J48 base = new J48();
- classifier.setClassifier(base);
- classifier.setEvaluator(eval);
- classifier.setSearch(search);
- Evaluation evaluation = new Evaluation(data);
- evaluation.crossValidateModel(classifier, data, 10, new Random(1));
- System.out.println(evaluation.toSummaryString());
- }
- /**
- * uses the filter
- */
- protected static void useFilter(Instances data) throws Exception {
- System.out.println("\n2. Filter");
- weka.filters.supervised.attribute.AttributeSelection filter = new weka.filters.supervised.attribute.AttributeSelection();
- CfsSubsetEval eval = new CfsSubsetEval();
- GreedyStepwise search = new GreedyStepwise();
- search.setSearchBackwards(true);
- filter.setEvaluator(eval);
- filter.setSearch(search);
- filter.setInputFormat(data);
- Instances newData = Filter.useFilter(data, filter);
- System.out.println(newData);
- }
- /**
- * uses the low level approach
- */
- protected static void useLowLevel(Instances data) throws Exception {
- System.out.println("\n3. Low-level");
- AttributeSelection attsel = new AttributeSelection();
- CfsSubsetEval eval = new CfsSubsetEval();
- GreedyStepwise search = new GreedyStepwise();
- search.setSearchBackwards(true);
- attsel.setEvaluator(eval);
- attsel.setSearch(search);
- attsel.SelectAttributes(data);
- int[] indices = attsel.selectedAttributes();
- System.out.println("selected attribute indices (starting with 0):\n" + Utils.arrayToString(indices));
- }
- /**
- * takes a dataset as first argument
- *
- * @param args the commandline arguments
- * @throws Exception if something goes wrong
- */
- public static void main(String[] args) throws Exception {
-
- args = new String[1] ;
- args[0] = "weka_data\\data\\src_data\\paper.arff" ; //导入文件
-
- // load data
- System.out.println("\n0. Loading data");
- DataSource source = new DataSource(args[0]);
- Instances data = source.getDataSet();
- if (data.classIndex() == -1)
- data.setClassIndex(data.numAttributes() - 1);
- // 1. meta-classifier
- useClassifier(data);
- // 2. filter
- useFilter(data);
- // 3. low-level
- useLowLevel(data);
- }
- }
复制代码 我这个是网上抄来的,有分类,过滤属性,降低维度的调用代码,仅供参考。
|