|
研究方向
基金项目
- 面向药物副作用识别的多视角稀疏模型研究,62172076,面上,丁漪杰主持
- 基于三维结构的小分子靶向药物智能发现与通用架构设计研究,62472069,面上,Stalin Antony主持
- 基于推荐算法与多源数据类型的药物-靶标相互作用预测,32470693,面上,茹晓青主持
- 基于多类特征整合与排序学习的药物-靶标相互作用预测,62101094,青年,茹晓青主持
- 基于单细胞测序数据的药物反应预测研究,62201129,青年,齐忍主持
研究成员
- 邹权(电子科技大学,教授)
- 鱼亮(西安电子科技大学,教授)
- 苏苒(天津大学,教授)
- 丁漪杰(电子科技大学长三角研究院(衢州),研究员)
- 齐忍(北京理工大学,副研究员)
- Stalin Antony(电子科技大学,助理研究员)
- 茹晓青(电子科技大学长三角研究院(衢州),实验员、科研助理)
- 任忠豪(湖南大学,博士生)
发表论文
- Shunyun Yang, Runxin Guo,Rui Liu, Xiangke Liao, Quan Zou*,Benyun Shi*, Shaoliang Peng*. cmFSM: A Scalable CPU-MIC CoordinatedDrug-Finding Tool by Frequent Subgraph Mining. BMC Bioinformatics.2018, 19(Suppl4): 98 (codes)
- Ran Su, Xinyi Liu, LeyiWei, Quan Zou*. Deep-Resp-Forest: Adeep forest model to predict anti-cancer drug response. Methods. 2019, 166: 91-102
- Xiaoqing Ru, Lida Wang*,Lihong Li, Hui Ding, Xiucai Ye, Quan Zou*.Exploration of the Correlation between GPCRs and Drugs Based on a Learning toRank Algorithm. Computers in Biology andMedicine. 2020, 119: 103660
- LiangYu, Yayong Shi, Quan Zou, ShuhangWang, Liping Zheng, Lin Gao. Exploring drug treatment patterns based on theaction of drug and multilayer network model. International Journal of Molecular Sciences. 2020, 21: 5014
- YifangShi, Lin Gao, Quan Zou, Liang Yu. Prediction of drug-target interactionsbased on multi-layer network representation learning. Neurocomputing.2021, 434: 80-89
- Xiaoqing Ru, Xiucai Ye*, Tetsuya Sakurai, Quan Zou, Lei Xu, ChenLin*. Current status and future prospects of drug-target interactionprediction. Briefings in FunctionalGenomics. 2021, 20(5):312-322
- Yuxin Gong, Bo Liao*, Peng Wang, Quan Zou. DrugHybrid_BS: Using Hybrid Feature Combined With Bagging-SVM to Predict Potentially Druggable Proteins. Frontiers in Pharmacology. 2021, 12: 771808
- YuCheng, Yongshun Gong, Yuansheng Liu*, Bosheng Song*, Quan Zou. Molecular design in drug discovery: a comprehensivereview of deep generative models. Briefingsin Bioinformatics. 2021, 22(6):bbab34.
- Yijie Ding, Jijun Tang,Fei Guo*, Quan Zou*. Identification of drug-target interactions viamultiple kernel-based triple collaborative matrix factorization. Briefingsin Bioinformatics. 2022, 23(2): bbab582 (data and codes)
- Xiaoqing Ru, Xiucai Ye*,Tetsuya Sakurai, Quan Zou*. NerLTR-DTA: Drug-target binding affinityprediction based on neighbor relationship and learning to rank. Bioinformatics.2022, 38(7): 1964-1971. (codes and datasets)
- Ran Su, Haitang Yang, Leyi Wei*, Siqi Chen*, Quan Zou*. A multi-label learning model for predicting drug-induced pathology in multi-organ based on toxicogenomics data. PLoS Computational Biology. 2022, 18(9): e1010402. (codes)
- Yuqing Qian, Yijie Ding*, Quan Zou*, Fei Guo*. Identification ofdrug-side effect association via restricted Boltzmann machines with penalizedterm. Briefings in Bioinformatics. Doi: 10.1093/bib/bbac458
- Zhonghao Ren, ZhuhongYou*, Quan Zou*, Changqing Yu*, Yanfang Ma*, Yongjian Guan, Hairu You, XinfeiWang, Jie Pan. DeepMPF: deep learning framework for predicting drug–target interactions based on multi-modal representation with meta-path semanticanalysis. Journal of Translational Medicine. 2023, 21: 48 (web server)
- Hongjie Wu, Junkai Liu,Tengsheng Jiang, Quan Zou, Shujie Qi, Zhiming Cui, Prayag Tiwari*, YijieDing*. AttentionMGT-DTA: A multi-modal drug-targetaffinity prediction using graph transformer and attention mechanism. NeuralNetworks. 2024, 169: 623-636 (codes)
- Chao Pang, Jianbo Qiao,Xiangxiang Zeng, Quan Zou, LeyiWei*. Deep Generative Models in De Novo Drug Molecule Generation. Journal of Chemical Information andModeling. Doi: 10.1021/acs.jcim.3c01496
- Yijie Ding, Fei Guo,Prayag Tiwari, Quan Zou. Identification of Drug-Side Effect AssociationVia Multi-View Semi-Supervised Sparse Model. IEEE Transactions on ArtificialIntelligence. DOI: 10.1109/TAI.2023.3314405
Yijie Ding, HongmeiZhou, Quan Zou*, Lei Yuan*. Identification of Drug-side EffectAssociation via Correntropy-loss based Matrix Factorization with Neural TangentKernel. Methods. 2023, 219: 73-81 Xiaoqing Ru, QuanZou, Chen Lin*. Optimization of drug-target affinity prediction methodsthrough feature processing schemes. Bioinformatics. 2023, 39(11):btad615 (codes) Ren Qi, Quan Zou*. Editorial: MachineLearning Methods in Single-Cell Immune and Drug Response Prediction. Frontiersin Genetics. 2023, 19: 1233078 Zhecheng Zhou, Linlin Zhuo*, Xiangzheng Fu*, Quan Zou*. JointDeep Autoencoder and Subgraph Augmentation for Inferring Microbial Responses toDrugs. Briefings in Bioinformatics. 2024, 25(1): bbad483. (codes) Junkai Liu, Shixuan Guan, Quan Zou, Hongjie Wu*,Prayag Tiwari, Yijie Ding. AMDGT: Attention aware multi-modal fusion using adual graph transformer for drug–disease associations prediction. Knowledge-BasedSystems. 2024, 284: 111359 Zhecheng Zhou, Zhenya Du, Xin Jiang, Linlin Zhuo*, Yixin Xu,Xiangzheng Fu*, Mingzhe Liu, Quan Zou*. GAM-MDR: probing miRNA–drugresistance using a graph autoencoder based on random path masking. Briefingsin Functional Genomics. 2024, 23(4): 475-483. (codes) Zhecheng Zhou,Qingquan Liao, Jinhang Wei, Linlin Zhuo*, Xiaonan Wu*, Xiangzheng Fu*, Quan Zou*. Revisiting Drug-Protein Interaction Prediction: A Novel Global-LocalPerspective. Bioinformatics. 2024, 40(5): btae271. (codes) Zhen Li, Qingquan Liao, Wenbin Liu*, Peng Xu,Linlin Zhuo, Xiangzheng Fu, Quan Zou. Multi-source data integration forexplainable miRNA-driven drug discovery. Future Generation Computer Systems.2024, 160: 109-119. (codes) Wei Song, Lewen Xu, Chenguang Han, Zhen Tian*, Quan Zou*. Drug-target interactionpredictions with multi-view similarity network fusion strategy and deepinteractive attention mechanism. Bioinformatics.2024, 40(6): btae346. (codes) Xinqian Ma, Xiangzheng Fu, Tao Wang, Linlin Zhuo*,Quan Zou*. GraphADT: Empowering Interpretable Predictions of AcuteDermal Toxicity with Multi-View Graph Pooling and Structure Remapping. Bioinformatics.2024, 40(7): btae438. (codes) Zhen Tian, Yue Yu, Fengming Ni*, Quan Zou. Drug‑target interaction prediction with collaborative contrastive learning and adaptive self‑paced sampling strategy. BMC Biology. 2024, 22: 216 Yaojia Chen, Jiacheng Wang, Quan Zou,Mengting Niu, Yijie Ding, Jiangning Song*, Yansu Wang*. DrugDAGT: adual-attention graph transformer with contrastive learning improves drug-druginteraction prediction. BMC Biology. 2024, 22: 233 (codes) Jinhang Wei, Linlin Zhuo*, Xiangzheng Fu*, XiangxiangZeng, Li Wang, Quan Zou, Dongsheng Cao*.DrugReAlign: a multisource prompt framework for drug repurposing based on largelanguage models. BMC Biology. 2024, 22:226 (codes) Zhonghao Ren, Xiangxiang Zeng, Yizhen Lao, Heping Zheng,Zhuhong You, Hongxin Xiang, Quan Zou*.A spatial hierarchical network learning framework for drug repositioningallowing interpretation from macro to micro scale. Communications Biology.2024, 7: 1413 (codes)
|
|